Course Objectives

- Unit I. Learn Basic Brain Information
- Unit II. Music in the Brain; Why Music Works
- Unit III. Considerations for Populations
 - a. Rehabilitation
 - b. Habilitation

Rhythmic/Musical Cues

- Motor training
 - Intrinsic and volitional
 - Cognitive training

Music/Rhythm Can:

- Rhythm can entrain movement
- Music can be used to show movement information (spatial, force) - to better organize movement!
- Music is invokes extended networks, using unimpaired areas relearn tasks
- Music is emotional, motivational

Rehabilitation

- Evidence of entrainment in:
 - Parkinson’s Disease
 - Cerebral Vascular Accident
 - Traumatic Brain Injury
 - Spinal Cord Injury
Parkinson’s

- Major deficit in basal ganglia (substantia nigra)
 - On-beat synchronization mechanism is maintained
 - Motor timing differences with syncopation (Stegemoller 2009)
 - Difference in beat determination (Grahn et al. 2009)

Parkinson’s

- A Meta-Analysis of Music aided Movement Therapy for Parkinson’s
 - Found significant effect sizes for:
 - Balance Scale
 - Timed Up and Go Test
 - Stride Length
 - No Significance for:
 - Quality of life, freezing, Unified Parkinson’s Rating Score

Parkinson’s

- Rhythm may also help with:
 - Freezing (Arias, 2010).
 - Turning (Nieuwboer, 2009).
 - Increased step amplitude (Arias, 2008).
 - Mental singing (Satoh & Kuzuhara, 2008).

What This Means

- Persons with damage to Basal Ganglia:
 - Can rehab motor patterns with rhythm
 - Likely “bypass” damaged areas of the brain by engaging areas not impacted by Parkinsons

Cerebral Vascular Accident

- Motor movement improvements dependent on area of insult
 - Evidence of entrainment in gait (Roerdink et al. 2009, 2007; Thaut et al. 2007)
 - Evidence of entrainment in volitional motor movement (Malcolm et al. 2009; Whitall et al. 2010)
 - Auditory stimulation worked better than Bobath training in measures of velocity, stride length, and cadence (Thaut, 2007).

CVA - Volitional

- Music assisted therapy (MAT) improved fine and gross motor skills, including movement speed, precision, and smoothness (Altenmuller, 2009).
 - Music-supported therapy improves motor patterns and facilitates cortical plasticity (Amengual et al., 2013; Grau-Sanchez et al. 2013)
 - Improved in their activities of daily living (Schneider, 2007).
Traumatic Brain Injury

- Injury varies; insult to cortical areas
 - Improvements in gait training (Hurt et al. 1998)

What this means

- Rhythm may be useful for rehab acquired brain injury:
 - For gait rehabilitation
 - Upper body rehabilitation

Spinal Cord Injury

- Incomplete Spinal Cord Injury
 - Motor and sensory are dependent on location of insult
 - Signs of entrainment that differed based on injury (de l'Etoile, 2008)
 - Findings that visuotemporal cue may work best (Amatachaya et al. 2009)

Cerebral Palsy

- Rhythmic cues:
 - Ameliorated anterior tilt of the pelvis and hip flexion
 - Aggravated internal and external rotation
 - Bobath:
 - Improved internal and external rotations of hip joints

 Kim, Kwak et al, 2012

- External rhythmic cues:
 - Lessening tilt of pelvis and hip flexion
 - Improvement of the Gait Deviation Index with RAS
 - Improvement in side-to-side asymmetry of step length

Kim, Kwak et al. 2011

Cerebral Palsy

- Keyboard playing:
 - Improved manual dexterity
 - Improved velocity of finger movement

Chong, Cho, Jeong & Kim, 2013
What this means

• Rhythm can be used for improvements with multiple neurological difficulties
 • Wittwer et al. 2013 - Evidence for CVA, not for others
 • Evidence of some contraindications

Clinical Practice

• Steady Rhythm
 • Metronome or body beat
 • Use appropriate tempo for skill function
 • Consideration of competing stimuli
 • Music imbedded with strong patterns
 • Motivational elements

Clinical Practice

• Where is the work?
 • ADD music to the work
 • Decrease the perception of work, increase cortical and motor efficiency
 • Use neurologic principals to better function
 • Eliminate music - do you still have function?

Clinical Practice

• In Rehabilitation:
 • Consider the rhythmic stimulus
 • Use cortical plasticity for “good”
 • Provide the brain with patterned information to ease processing
 • Remember points about perception-action mediation and entrainment principles
 • Consider the limitation of our research, apply the best logic

Overview of NMT

• Neurologic Music Therapy:
 • Is a music therapy methodology based on applied and clinical research
 • Strives to help clinicians maintain evidence-based medicine (EBM)
 • The RF Unkefer Academy of NMT has over 800 certified members; 129 Fellows

NMT Techniques

• Rhythmic Auditory Stimulation (RAS)
• Therapeutic Instrument Music Performance (TIMP)
• Patterned Sensory Enhancement (PSE)
Habilitation

Similar to Rehab...

- Consider neurological side of diagnoses:
 - Example - Autism
 - Multiple brain areas implicated in autism
 - Local over-connectivity, long-range under-connectivity
 - Fragile X Syndrome
 - Slowed neural transmission times

Neural development

- Rapid development
- Reflexive to skill
- Synaptic pruning
- Critical/sensitive windows
- Experience
- Entrainment

Entrainment?

- Perception = taking in, organizing, and interpreting sensory information.
- Motor development = changes in children’s ability to control their body’s movements
- Perceptual-motor development = the developing ability of the young to integrate their perception and motor processes to achieve optimal motor responses to their environment

Entraining to a stimulus

- Motor synchronization abilities in children increase with chronological development
- Seven-year-old children synchronized finger tapping to auditory stimulus with 77% accuracy.
- Eleven-year-olds performed at 98% accuracy for the same task.

Meaning...

- Rhythm can still work in children!
 - Beat matching isn’t typically developed till adolescence
 - Studies show that neurons DO synchronize to external auditory stimulus (Davies et al. 2009)
Cognitive Research

- Less clinical research in cognitive and social realm
- Difficulty studying populations
- Difficulty with measurement of skills
- Need for pilot studies and clinical research

How Music Can Help in Cognition

- Music thought to help with cognitive flexibility
- Music involves attention function
- Music performance involves executive function
- Rhythmic patterns can synchronize with internal oscillators

Hedge, 2014

Evidence of Improvements in:

- Visual Neglect (see Thaut & McIntosh, 2014**)
- Executive Function (TBI; Thaut et al. 2009; Hedge, 2014**; Mueller, in review)
- Memory (MS; Thaut, 2008)
- Emotional Regulation (TBI; Thaut et al., 2009) (OA; Chu et al., 2014)
- Cognitive Functioning (OA; Hars et al., 2014)

Techniques

- Music Neglect Training (MNT)
- Music Attention Control Training (MACT)
- Music Executive Functioning Training (MEFT)

Music Attention Control Training

Goal:

To practice focused, sustained, selective, divided, and alternating attention functions

Diagnostics:

- Autism Spectrum, ADHD, CVA, TBI, Psychiatric Disorders, Dementia/Alzheimer’s

Attention Control

- Basic Research:
 - Activations in the prefrontal areas with large (conscious) perturbations in rhythmic consistency

Stephan et al 2002, Neuroimage
Clinical Research - TBI

- MACT with Adults with Traumatic Brain Injury
- Eight Participants
- Ages: $M = 27$; Range = 24-74
- Single Case Design: Reversal
- Paced Auditory Serial Addition Test (PASAT): Clinical Assessment for Attention (CAT)

Abiru et al. (in press)

Clinical Research - ASD

- MACT with Adolescents with Autism Spectrum Disorders
- Nine Participants
- Ages: $M = 16.25$; Range = 12-20
- Pre-test –post-test design
- Two sessions a week for four weeks
- Test of Everyday Attention – Child

Attention Training Protocol

- Music Attention Control Training - sustained
 - Client hears stimulus and demonstrates behavior
 - Stimulus is changed and client changes behavior
- Music Attention Control Training – selective
 - Client hears stimulus and with imbedded cue
 - Upon hearing the imbedded cue, the client’s behavior changes.

Results

- TEA-CH Ten Subtests
 - No significant effects for:
 - Sustained
 - Divided Attention
 - Significant effects for:
 - Selective
 - Switching

Selective Attention

- "Sky Search" $^{*p = .004}$
- "Map Search" $^{*p = .04}$

Switching Attention

- "Creature Count" $^{*p = .024}$
- "Opposite World" $^{*p = .039}$
Executive Functioning

Goal: To practice executive function skills
- Organization
- Problem solving
- Decision making
- Reasoning
- Comprehension

Diagnostics:
- TBI, CVA, Psychiatric Disorders, Neurologic Disorders with executive function deficits

Basic Research

- Music activates the known networks and areas for executive functions including:
 - Prefrontal cortex,
 - Orbitofrontal cortex,
 - Cingulate cortex,
 - Temporal poles/frontal polar region,
 - Cortico-cerebellar loop
 - Dorsal premotor cortex (Koelsch, 2009; Ramnani and Passingham, 2001; Zatorre et al., 2007).

Clinical Research

- MEFT with adults with TBI, CVA, seizures, and brain tumor
- Thirty-one participants
- Ages: M = 50
- Quasi Experimental Design; Control = 14 Treatment = 21
- Wechsler Adult Intelligence Scale (Attention), Auditory Verbal Learning Test (Memory), Brief Symptom Inventory (Emotional), and Multiple Affect Adjective Check List (Emotions). Thaut et al. (2009).

Confidence in Executive Functioning Ability

Child Research

- Musical cuing was utilized to learn sequential information, such as counting and phone numbers. Information embedded in a musical structure was found to be easier to recall. (Wolfe 1993)
- Children are able to easily attend to musical stimuli. Music aided in decreasing distractibility, thereby increasing attention and memory. (Morton 1990).
- Children engaged in music for more than 1 year show increased gamma-band response activity (brainwaves associated with memory, attention, and integration of multisensory experiences)
 - Could lead to enhanced executive function and learning (Trainor et al. 2009)

Reading Skills

Bottom Line

- Music can change the brain in very little time
- Music is not only motivating, but promotes neural synchrony
- Music can engage nonmusical areas, as well as extended areas of the brain.
 - Children with disabilities may have differential neural response to music vs. nonmusical stimuli. Example: Lai et al. 2012
- Music can provide a scaffold for learning nonmusical information

Music Therapy

- Music is:
 - Rhythmic
 - Highly predictable
 - Structure, anticipation, organization
 - Motivating & fun
 - Organizing
 - Multi-sensory

Clinical Practice

- Let the music do the work
- With children, use the music but "hide the peas in the potatoes"
- Consider the rhythmic/musical template - are you supporting the work?

In Conclusion

- Music is a powerful medium in the brain
- Rhythm appears to be a key to organization in the brain
- Music can facilitate functional goals due to shared/extended networks
- Additional factors including emotional responses and motivation make this an excellent medium for therapy